Econ 802

Final Exam

Greg Dow
December 16, 2020
All questions have equal weight. If you are not making any progress on a question, it is a good idea to move on to something else and come back to it later.

1. A clever undergraduate student makes the following statements. In each case, construct an exception to the student's claim. Explain using graphs.
(a) "If a firm has a positive marginal product for every input, then it uses a positive amount of every input."
(b) "If a consumer minimizes expenditure, then her Hicksian demand curves must be downward sloping."
(c) "If a market has free entry and exit in the long run, and all firms are price takers, then there is a price level where supply equals demand."
2. A production function $f(x)$ with $x=\left(x_{1} \ldots x_{n}\right) \geq 0$ is differentiable, strictly quasiconcave, and has positive marginal products. The input prices are $w=\left(w_{1} \ldots w_{n}\right)$ >0. Assume all optimization problems have interior solutions.
(a) Define the function $g(w, e) \equiv \max f(x)$ subject to $w x \leq$ e where e >0 is a scalar. Describe the mathematical properties of $\mathrm{g}(\mathrm{w}, \mathrm{e})$. Carefully justify your answers.
(b) Define the cost function $c(w, y) \equiv$ min $w x$ subject to $f(x) \geq y$. If you happen to know $c(w, y)$, can you find $g(w, e)$? If you know $g(w, e)$, can you find $c(w, y)$? Give a mathematical argument and explain using a graph for the case $\mathrm{n}=2$.
(c) Suppose you know $g(w, e)$. Describe a mathematical method you could use to find the production function $f(x)$. Carefully justify each step in your argument and explain using a graph for the case $\mathrm{n}=2$.
3. Kamala cares about $x \geq 0$ and $y \geq 0$. Her utility function is $u=1-e^{-r x}+y$ where r >0. The price of good x is p where $0<p \leq r$. The price of good y is always one. Kamala is endowed with w units of the y good but none of the x good.
(a) Find the Marshallian and Hicksian demand functions for the x good. Show that in each case your solution satisfies a sufficient second order condition.
(b) Solve for the indirect utility function $v(p, w)$. If there are many small Kamalas $\mathrm{i}=$ $1 . . n$ with different preference parameters r_{i} and different endowments w_{i}, would it make sense to treat the aggregate market demand $X(p)=\sum x_{i}(p)$ for the x good as if it came from one big Kamala? Justify your answer.
(c) The x good is not currently available but the government could sell a fixed total supply $\mathrm{X}^{0}>0$ at an equilibrium price p^{0}. It would cost the government $\mathrm{F}>0$ to produce X^{0} where F is measured in terms of the y good. The government will do this if and only if the area under the market demand curve $X(p)$ up to the amount X^{0} exceeds F . Does this plan make economic sense? Explain using a graph.
4. Firms in the widget industry have the production function $y=\left(x_{1} x_{2}\right)^{1 / 2}$ where $x_{1} \geq$ 0 and $\mathrm{x}_{2} \geq 0$. The input prices are always $\mathrm{w}_{1}=\mathrm{w}_{2}=1$. The price of output is $\mathrm{p}>$ 0 . Both in the short run and in the long run, the number of firms is fixed at n.
(a) In the short run, $x_{2}>0$ is fixed for each firm. Find the supply function $y(p)$ for an individual firm and show it on a graph. Does the firm ever shut down in the short run? Use your graph to explain why or why not.
(b) Let $\mathrm{x}_{\mathrm{j} 2}>0$ be the level of the fixed input for firm $\mathrm{j}=1 \ldots \mathrm{n}$. Solve for the short run market supply function $S(p)$. Then assume the market demand function is $D(p)=A p^{-b}$ where $A>0$ and $b>0$. Solve for the short run equilibrium price p^{*} as a function of the exogenous parameters and show your solution on a graph.
(c) In the long run, the firms $\mathrm{j}=1 \ldots \mathrm{n}$ can choose the levels of both inputs. Using the same demand function as in (b), solve for the equilibrium price p^{*} and show your solution on a graph. Is it possible for the price to be lower in the short run than in the long run? Carefully explain why or why not.
5. There are consumers $i=A, B$ and goods $j=1,2$. A's consumption bundle is $\left(x_{A 1}\right.$, $\left.\mathrm{x}_{\mathrm{A} 2}\right) \geq 0$ and B^{\prime} b bundle is $\left(\mathrm{x}_{\mathrm{B} 1}, \mathrm{x}_{\mathrm{B} 2}\right) \geq 0$. A has the utility function $\mathrm{u}_{\mathrm{A}}=\alpha \ln \mathrm{x}_{\mathrm{A} 1}+$ $(1-\alpha) \ln \mathrm{x}_{\mathrm{A} 2}$ and B has the utility function $\mathrm{u}_{\mathrm{B}}=\beta \ln \mathrm{x}_{\mathrm{B} 1}+(1-\beta) \ln \mathrm{x}_{\mathrm{B} 2}$ where $0<\alpha$ <1 and $0<\beta<1$.
(a) A's endowment vector is $\left(\mathrm{w}_{\mathrm{A} 1}, \mathrm{w}_{\mathrm{A} 2}\right)>0$ and B 's endowment vector is $\left(\mathrm{w}_{\mathrm{B} 1}, \mathrm{w}_{\mathrm{B} 2}\right)>$ 0 . Solve for the Walrasian equilibrium price ratio $\mathrm{p}_{2} / \mathrm{p}_{1}$. Explain your reasoning.
(b) Assume instead there is a social planner who maximizes $\mathrm{au}_{\mathrm{A}}+\mathrm{bu}_{\mathrm{B}}$ where $\mathrm{a}>0, \mathrm{~b}$ >0, and $\mathrm{a}+\mathrm{b}=1$. The total supply of good 1 is W_{1} and the total supply of good 2 is W_{2}. Solve for the ratio of the Lagrange multipliers $\mathrm{q}_{2} / \mathrm{q}_{1}$ associated with the two physical feasibility constraints. Explain your reasoning.
(c) Taking the weights (a, b) as given, find individual endowment vectors $\left(\mathrm{w}_{\mathrm{A} 1}, \mathrm{w}_{\mathrm{A} 2}\right)$ and $\left(\mathrm{w}_{\mathrm{B} 1}, \mathrm{w}_{\mathrm{B} 2}\right)$ such that $\mathrm{p}_{2} / \mathrm{p}_{1}=\mathrm{q}_{2} / \mathrm{q}_{1}$. Give a detailed verbal interpretation.
